ИНДУКЦИЯ

ИНДУКЦИЯ (от лат. inductio - наведение) — умозаключение, в котором связь посылок и заключения не опирается на логиче­ский закон, в силу чего заключение вытекает из принятых посы­лок не с логической необходимостью, а только с некоторой веро­ятностью. И. может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. И. противопоставляется дедукция - умозаключение, в котором связь посылок и заключения опирается на закон логики и в котором заключение с логической необходимостью следует из посылок. Два примера индуктивных умозаключений: Енисей течет с юга на север; Лена течет с юга на север; Обь и Иртыш текут с юга на север. Енисей, Лена, Обь, Иртыш — крупные реки Сибири. Все крупные реки Сибири текут с юга на север. Железо — металл; медь — металл; калий — металл; кальций - металл; рутений — металл; уран — металл. Железо, медь, калий, кальций, рутений, уран — химические элементы. Все химические элементы — металлы. Посылки обоих этих умозаключений истинны, но заключение первого истинно, а второго ложно. Понятие дедукции (дедуктивного умозаключения) не является вполне ясным. И. (индуктивное умозаключение) определяется, в сущности, как "недедукция" и представляет собой еще менее яс­ное понятие. Можно темные менее указать относительно твердое "ядро" индуктивных способов рассуждения. В него входят, в част­ности, неполная И., индуктивные методы установления причин­ных связей, аналогия, т.наз. "перевернутые" законы логики и др. Неполная И. представляет собой рассуждение, имеющее следу­ющую структуру: S1 есть Р, S2 есть Р, ............. Sn есть Р Все S1, S2,..., Sn есть S. Все S есть Р. Посылки данного рассуждения говорят о том, что предметам S1, S2,..., Sn, не исчерпывающим всех предметов класса S, присущ при­знак Р и что все перечисленные предметы S1, S2, ..., Sn принадлежат классу S. В заключении утверждается, что все S имеют признак Р. Напр.: Железо ковко. Золото ковко. Свинец ковок. Железо, золото и свинец — металлы. Все металлы ковки. Здесь из знания лишь некоторых предметов класса металлов дела­ется общий вывод, относящийся ко всем предметам этого класса. Индуктивные обобщения широко применяются в эмпириче­ской аргументации. Их убедительность зависит от числа приводимых в подтверждение случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Но иног­да и при достаточно большом числе подтверждений индуктивное обобщение оказывается все-таки ошибочным. Напр.: Алюминий — твердое тело. Железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец — твердые тела. Алюминий, железо, медь, цинк, серебро, платина, золото, ни­кель, барий, калий, свинец — металлы. Все металлы — твердые тела. Все посылки этого умозаключения истинны, но его общее зак­лючение ложно, поскольку ртуть — единственная из металлов — жидкость. Поспешное обобщение, т. е. обобщение без достаточных на то оснований, — обычная ошибка в индуктивных умозаключениях и, соответственно, в индуктивной аргументации. Индуктивные обобщения всегда требуют известной осмотрительности и осто­рожности. Их убедительная сила невелика, особенно если база индукции незначительна ("Софокл — драматург; Шекспир -драматург; Софокл и Шекспир — люди; следовательно, каж­дый человек — драматург"). Индуктивные обобщения хороши как средство поиска предположений (гипотез), но не как сред­ство подтверждения каких-то предположений и аргументации в их поддержку. Начало систематическому изучению И. было положено в нача­ле XVII в. Ф. Бэконом. Уже он весьма скептически относился к неполной И., опирающейся на простое перечисление подтвер­ждающих примеров. Этой "детской вещи" Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь откры­тия знаний, являющийся очень простой, чуть ли не механической процедурой, "почти уравнивает дарования и мало что оставляет их превосходству...". Продолжая его мысль, можно сказать, что он на­деялся едва ли не на создание особой "индуктивной машины". Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения. Программа Бэкона была, разумеется, чистой утопией. Никакая "индуктивная машина", перерабатывающая факты в новые законы и теории, невозможна. И., ведущая от единичных утвержде­ний к общим, дает только вероятное, а не достоверное знание. Высказывалось предположение, что все "перевернутые" законы логики могут быть отнесены к схемам индуктивного умозаключения. Под "перевернутыми" законами имеются в виду формулы, получае­мые из имеющих форму импликации (условного утверждения) за­конов логики путем перемены мест основания и следствия. К приме­ру, поскольку выражение "Если р и q, то р" есть закон логики, то выражение "Если р, то р и q" есть схема индуктивного умозаключе­ния. Аналогично для "Если р, то р или q" и "Если р или q, то р" и т. п. Сходно для законов модальной логики: поскольку выражения "Если р, то возможно р" и "Если необходимо р, то р" - законы логики, выражения "Если возможно р, то р" и "Если р, то необходимо р" являются схемами индуктивного рассуждения и т. п. Законов логики бесконечно много. Это означает, что и схем индуктивного рассужде­ния (индуктивной аргументации) бесконечное число. Предположение, что "перевернутые" законы логики представля­ют собой схемы индуктивного рассуждения, наталкивается на серь­езные возражения: некоторые "перевернутые" законы остаются зако­нами дедуктивной логики; ряд "перевернутых" законов, при истолко­вании их как схем И., звучит весьма парадоксально. "Перевернутые" законы логики не исчерпывают, конечно, всех возможных схем



Словарь по логике 

ИНДУКЦИЯ МАТЕМАТИЧЕСКАЯ, ПОЛНАЯ МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ →← ИНДУКЦИИ КАНОНЫ

T: 0.225343575 M: 3 D: 3