КЛАСС, МНОЖЕСТВО

КЛАСС, МНОЖЕСТВО (В ЛОГИКЕ И МАТЕМАТИКЕ) — конеч­ная или бесконечная совокупность объектов, выделенная по об­щему для них признаку (свойству или отношению), мыслимая как нечто целое. Объекты, составляющие К., называются его элемента­ми. Примером К. (м.) могут быть следующие: "реки России", "чет­ные числа". Первый К. является конечным, второй — бесконечным. Элементами первого К. являются отдельные реки — Волга, Ока, Енисей и др. Элементами второго К. являются числа — 0, 2, 4, 6, 8 и т. д. до бесконечности. Элементами К. могут быть, в свою очередь, К. Так, элементами К. "типы животных" являются К. простейших жи­вотных, губок, кишечнополостных и т. д. К. бывают единичны­ми, общими и нулевыми (пустыми). Единичные К. состоят из одного элемента (напр., "самая большая река в Европе"); общие К. состоят из двух и более элементов (напр., "химический элемент", "машина"); нулевые К. не включают в свой состав ни одного эле­мента (напр., "круглый квадрат", "число меньше двух и больше трех"). Объект определенной области принадлежит данному К., явля­ется его элементом, если он обладает признаками, по которым образован К. В противном случае он исключается из К. Так, если нам дана область натуральных чисел и мы хотим выделить те из них, которые являются элементами К. простых чисел, то в К.. про­стых чисел войдет, напр., число 7, т. к. оно обладает свойством простых чисел ("7 — простое число" — истина), а число 8 не войдет (т. к. "8 — простое число" — ложь). Образуя К. к.-л. объектов, мы начинаем их рассматривать лишь под углом зрения некоторых свойств, от иных же свойств абстрагируемся. Так, образуя К. квад­ратов, мы учитываем такие свойства плоских многоугольников, как "быть четырехугольником", "иметь равные углы", "иметь равные стороны". Площадь, длина сторон и т. п. не учитываются. Это озна­чает, что отдельные квадраты, составляющие К.квадратов, отож­дествляются нами, становятся неразличимыми в некоторых свой­ствах (см.: Абстракция). Общее понятие о К. возникает как результат абстракции не толь­ко от природы его элементов, но и от их порядка.



Словарь по логике 

КЛАССИФИКАЦИЯ →← КАУЗАЛЬНАЯ МОДАЛЬНОСТЬ

T: 0.173311283 M: 3 D: 3