А Б В Г Д З И К Л М Н О П Р С Т У Ф Ц Ч Э Ю Я 
  • РАВЕНСТВО  —  РАВЕНСТВО — отношение между знаковыми выражениями, обо­значающими один и тот же объект, когда все, что можно высказать на языке соответствующей теории об одном из них, можно выска­зать и о другом, и наоборот, и при этом получать истинные выска­зывания. Обозначаемые объекты могут быть построены различным способом, напр., один объект может быть представлен как "3•5", а другой как "20-5", но между ними может быть поставлен знак Р. Отношение Р позволяет заменять одни и те же объекты, постро­енные различным образом, друг на друга в различных контекстах (правило подстановочности). Выражения (формулы), содержащие пре­дикат Р., могут содержать переменные, или параметры. Если такая формула является истинной при всех значениях переменных (пара­метров), то отношение Р называют тождеством. Если же она явля­ется истинной лишь при некоторых значениях, то ее называют урав­нением. Отношение Р обладает свойствами симметричности, тран­зитивности и рефлексивности.
  • РАВНОЗНАЧНОСТЬ  —  РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность) — от­ношение между высказываниями или формулами, когда они при­нимают одни и те же истинностные значения. Напр., при любых значениях элементарных высказываний формулы (A v B) и (B v A), (A v (A & В)) и A принимают одни и те же значения, т. е. если одна из них истинна, то и другая истинна, если одна из них ложна, то и другая также ложна. Если два высказывания A и В равнозначны, то формулы А -> В и B -> А будут тождественно истинными.
  • РАВНООБЪЕМНОСТЬ  —  РАВНООБЪЕМНОСТЬ — отношение между понятиями, объемы которых совпадают. Напр., понятия "луна" и "естественный спутник Земли" совпадают по своему объему, в который входит только один предмет; понятия "человек" и "разумное существо, владеющее чле­нораздельной речью" равны по своему объему, т. к. обозначают один и тот же класс — людей.
  • РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ  —  РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ  -умозаключение, в котором одна из посылок — разделительное суж­дение, а другая — категорическое. Р.-к. у. имеет два модуса: 1) модус утверждающе-отрицающий; 2) модус отрицающе-утверждающий. Простейшая форма модуса (1) имеет вид: S есть Р1 или p2 (первая посылка); S есть Р1 (вторая посылка); S не есть p2 (заключение). Такую форму имеет, напр., следующее умозаключение: "Жидкие кол­лоидные системы бывают эмульсиями либо золями. Данная жидкая коллоидная система является эмульсией. Данная жидкая коллоид­ная система не является золем". В таком умозаключении для обеспе­чения его правильности в разделительной посылке союз "или" ("либо") должен употребляться в строго разделительном смысле (см.: Дизъюнкция). Простейшая форма модуса (2) имеет вид: S есть Р1 или p2, S не есть р1; следовательно, S есть Р2. Пример: Организмы бывают одноклеточными или многоклеточными. Данный организм не является одноклеточным. Данный организм является многоклеточным. В таком умозаключении для обеспечения его правильности в пер­вой посылке должны быть перечислены все члены дизъюнкции (аль­тернативы).
  • РАЗДЕЛИТЕЛЬНО-УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ  —  РАЗДЕЛИТЕЛЬНО-УСЛОВНОЕ УМОЗАКЛЮЧЕНИЕ, см.: Ди­лемма.
  • РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ  —  РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ — дизъюнктивное (от лат. disjunctio — разобщаю) сложное суждение, образованное из двух или большего числа суждений с помощью логической связки "или". Общая форма Р. с. имеет вид А1 v A2 v, ..., v An, где Аn — суждение (член дизъюнкции, альтернатива), a v — знак дизъюнкции. Суще­ствуют два вида Р. с.: строго разделительные и нестрого раздели­тельные. В строго разделительных суждениях связка "или", "либо" употребляется в строго разделительном смысле (см.: Дизъюнкция), т. е. когда члены дизъюнкции (альтернативы) в двучленном сужде­нии A1 v A2 несовместимы (одно из них является истинным, а дру­гое — ложным). Таково суждение: "Этот человек является виновным (A1) либо этот человек не является виновным (А2)". Естественно, что данный человек не может быть одновременно виновным и невиновным, имеет место лишь одна из альтернатив. В нестрого разделительных суждениях (см.: Дизъюнкция) альтернативы не яв­ляются несовместимыми. Таково суждение "Этот ученик является способным или он является прилежным". В этом суждении не ис­ключается, что ученик может быть одновременно способным и прилежным. Р. с. в обычном языке формулируются чаще всего в сокращенной форме и имеют, напр., вид: "S есть Р1 или P2 или "Р1 или p2 принадлежит S". Так, суждение "Данный треугольник прямоуголь­ный или непрямоугольный" означает Р. с. "Данный треугольник пря­моугольный или данный треугольник непрямоугольный" Связка "либо" вместо связки "или" используется обычно в строго раздели­тельных суждениях.
  • РАЗРЕШАЮЩАЯ ПРОЦЕДУРА  —  РАЗРЕШАЮЩАЯ ПРОЦЕДУРА, см.: Разрешения проблема.
  • РАЗРЕШЕНИЯ ПРОБЛЕМА  —  РАЗРЕШЕНИЯ ПРОБЛЕМА, или: Разрешимости пробле­ма,  — проблема нахождения для данной дедуктивной теории общего метода, позволяющего решать, может ли отдельное утверждение, сфор­мулированное в терминах теории, быть доказано в ней или нет. Этот общий метод, являющийся эффективной процедурой (алгоритмом), называется процедурой разрешения или разрешающей процедурой, а теория, для которой такая процедура существует, — разрешимой теорией. Р. п. решается в классической логике высказываний с помощью таблиц истинности. Разрешающий алгоритм существует и для логи­ки одноместных предикатов, для силлогизма категорического и дру­гих простых дедуктивных теорий. Но уже для логики предикатов общего решения Р. п. не существует. В математике также невозможно установить общий метод, который дал бы возможность провести различие между утверждениями, которые могут быть доказаны в ней, и теми, которые в ней недоказуемы. Невозможность найти для теории общий разрешающий метод не исключает поиска процедуры разрешения для отдельных классов ее утверждений.
  • РАЗРЕШИМАЯ ТЕОРИЯ  —  РАЗРЕШИМАЯ ТЕОРИЯ — теория, для которой существует эф­фективная процедура (алгоритм), позволяющая о каждом утвержде­нии, сформулированном в терминах этой теории, решить, выводимо оно в теории или нет (см.: Разрешения проблема). Р. т. являются, напр., элементарная алгебра Буля, теория сложения целых чисел и некоторые иные простые математические теории. Не­разрешима арифметика целых чисел (т. е. теория четырех главных арифметических действий над целыми числами) и каждая дедук­тивная теория, содержащая арифметику.
  • РАЦИОНАЛЬНОСТЬ  —  РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум) — относящееся к ра­зуму, обоснованность разумом, доступное разумному пониманию, в противоположность иррациональности как чему-то неразум­ному, недоступному разумному пониманию. В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соот­ветствует логико-методологическим стандартам, — Р., то, что наруша­ет эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность. До недавних пор считалось, что образцом Р. деятельности явля­ется наука и деятельность ученого. Все остальные сферы человечес­кой деятельности Р. лишь в той мере, в какой они опираются на научные знания и методы. В настоящее время признано, что каждая область деятельности имеет свои стандарты Р., которые далеко не всегда совпадают с научными, поэтому можно говорить о Р. в ис­кусстве, в политике, в управлении и т. д. Поэзия столь же Р., как и наука, но в ней иные стандарты Р.
  • РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ  —  РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ (от лат. recurso - возвраща­юсь)  — метод определения арифметической функции φ(у) или пре­диката Р(у) через область значений этой функции или предиката. Примером Р. о. может быть определение функции сложения: а + 0 = а,      (1) а + b‘=(а+b)‘ (2) В равенстве (1) говорится, что некоторое фиксированное число а (см.: Параметр) при прибавлении к нему нуля дает число а. В равенстве (2) говорится., что если к некоторому фиксированному числу а добавить число, следующее за некоторым фиксированным числом b (т. е. b‘, или число b+1), то эта сумма будет равна числу, следующему за суммой чисел а+b. Напр., если к числу 2 добавить число, следующее за числом 3, т. е. число 4, то этот же результат можно получить, сложив 2 и 3 и перейдя от полученной суммы к следующему за ней числу. Значение левой и правой частей равенства в данном случае равно 6. Такого рода функции позволяют вычислять значение суммы самых различных чисел. При этом осуществляется переход от некото­рого числа п к следующему за ним (к п‘, или п+1), т. е. строится натуральный ряд чисел начиная с нуля. Допустим, нам требуется сло­жить 5 и 2. Тогда число 2 представим как следующее за 1, т. е. как 1‘. Итак, имеем: а)5+2=5+1‘=(5+1)‘ б)5+1=5+0‘=(5 + 0)‘ } по равенству (2), в) 5+0=5 — по равенству (1). Теперь будем возвращаться от равенства 5+0=5 (в) к равенству (б), а затем к равенству (а). Раз 5+0=5, то (5+0)‘=6 (см. равенство (б)). Раз 5+1 равно 6, то (5+1)‘=7 (см. равенство (а)). Итак, 5+2=7. В основе вычислимости арифметических функций, определяемых рекурсивно, лежит класс некоторых других функций, считающих­ся заданными с самого начала, которые называются примитивно-рекурсивными.
  • РЕЛЕВАНТНАЯ ИМПЛИКАЦИЯ  —  РЕЛЕВАНТНАЯ ИМПЛИКАЦИЯ, см.: Релевантная логика.
  • РЕЛЕВАНТНАЯ ЛОГИКА  —  РЕЛЕВАНТНАЯ ЛОГИКА — одна из наиболее известных неклас­сических теорий логического следования. В названии "Р. л." отражает­ся стремление выделить и систематизировать только уместные (релевантные) принципы логики, исключив, в частности, парадоксы импликации, свойственные импликации материальной классической логики, строгой импликации и др. импликациям. В Р. л. формальным аналогом условного высказывания является релевантная импликация, учитывающая содержательную связь, существующую между основанием (антецедентом) и след­ствием (консеквентом) такого высказывания. Выражение "Утвер­ждение A релевантно имплицирует утверждение В" означает, что В содержится в A и информация, представляемая В, является частью информации A. В частности, A не может релевантно имплицировать В, если в В не входит хотя бы одно из тех утверждений, из которых слагается А. В Р. л. не имеет места принцип, позволяющий из противоречия выводить какое угодно высказывание. Эта логика является, таким образом, одной из паранепротиворечивых логик, не отождествляющих противоречивость опирающихся на них теорий с их тривиальностью, т. е. с доказуемостью в них любого утверждения. В Р. л. логически истинное высказывание невыводимо из произ­вольно взятого высказывания.
  • РЕФЕРЕНТ  —  РЕФЕРЕНТ (от лат. refero — называть, обозначать)  — объект, обо­значаемый некоторым именем, то же, что и денотат. Напр., Р. выра­жения "первый космонавт" будет Юрий Гагарин (см.: Имя, Дено­тат).
  • РЕФЕРЕНЦИЯ  —  РЕФЕРЕНЦИЯ — отношение между обозначаемым и обозначаю­щим, между предметом и его именем. Отношение Р. изучается теори­ей референции — разделом логической семантики (см.: Имя, Дено­тат).
T: 0.428234636 M: 1 D: 1